Acyclically 3-Colorable Planar Graphs

نویسندگان

  • Patrizio Angelini
  • Fabrizio Frati
چکیده

In this paper we study the planar graphs that admit an acyclic 3-coloring. We show that testing acyclic 3-colorability is NP-hard, even for planar graphs of maximum degree 4, and we show that there exist infinite classes of cubic planar graphs that are not acyclically 3-colorable. Further, we show that every planar graph has a subdivision with one vertex per edge that admits an acyclic 3-coloring. Finally, we show that every series-parallel graph admits an acyclic 3-coloring and we give a linear-time algorithm for recognizing whether every 3-coloring of a series-parallel graph is acyclic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acyclic 4-choosability of planar graphs

A proper vertex coloring of a graph G = (V , E) is acyclic if G contains no bicolored cycle. Given a list assignment L = {L(v) | v ∈ V } of G, we say G is acyclically L-list colorable if there exists a proper acyclic coloring π of G such that π(v) ∈ L(v) for all v ∈ V . If G is acyclically L-list colorable for any list assignment with |L(v)| ≥ k for all v ∈ V , then G is acyclically k-choosable...

متن کامل

A note on the acyclic 3-choosability of some planar graphs

An acyclic coloring of a graph G is a coloring of its vertices such that : (i) no two adjacent vertices in G receive the same color and (ii) no bicolored cycles exist in G. A list assignment of G is a function L that assigns to each vertex v ∈ V (G) a list L(v) of available colors. Let G be a graph and L be a list assignment of G. The graph G is acyclically L-list colorable if there exists an a...

متن کامل

Acyclic 3-Colorings and 4-Colorings of Planar Graph Subdivisions

An acyclic coloring of a graph G is an assignment of colors to the vertices of G such that no two adjacent vertices receive the same color and every cycle in G has vertices of at least three different colors. An acyclic k-coloring of G is an acyclic coloring of G with at most k colors. It is NP-complete to decide whether a planar graph G with maximum degree four admits an acyclic 3-coloring [1]...

متن کامل

Acyclic colorings of locally planar graphs

It will be shown that locally planar graphs are acyclically 8-colorable. In this result, a new notion of local planarity based on homology instead of the homotopy is used. This gives weaker requirement than the usual large edge-width condition.

متن کامل

Star Coloring and Acyclic Coloring of Locally Planar Graphs

It is proved that every graph embedded in a fixed surface with sufficiently large edge-width is acyclically 7-colorable and that its star chromatic number is at most 2s * 0 + 3, where s * 0 ≤ 20 is the maximum star chromatic number for the class of all planar graphs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Optim.

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2010